If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-30x-180=0
a = 5; b = -30; c = -180;
Δ = b2-4ac
Δ = -302-4·5·(-180)
Δ = 4500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4500}=\sqrt{900*5}=\sqrt{900}*\sqrt{5}=30\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30\sqrt{5}}{2*5}=\frac{30-30\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30\sqrt{5}}{2*5}=\frac{30+30\sqrt{5}}{10} $
| -2/3y+4=-8 | | 11x-4=-6x+31 | | 168=(2x+10)(2x+8) | | -11x-4=−6x+31 | | (v-3)^2+5=0 | | 164-x=9 | | 12x+6=3x+16 | | 9x+8=5x+4(x+2) | | 271=-u+186 | | 12=5g+2 | | 7k-12=54 | | 9=2t–3 | | 251=47-w | | 11–t3=13 | | -28=-2x4 | | -w+203=48 | | t=16t^2+12t+10 | | 0.3Xx=250 | | -28=4x-2 | | 161-w=69 | | 18=17+x4 | | 12x-10=264 | | 50+10+2x=180 | | 274=195w | | 50+20+2x=180 | | 5x-3x+10=90 | | 27-2+3x+2=180 | | -x+109=292 | | 166=271-v | | 3x+4=17x-7 | | x=(1.5)x10 | | 5+3(m+2)=35 |